Directional spool valve banks type SWS

Directly solenoid actuated (on/off or proportional)

Flow Q_{max} = 25 lpm Operation pressure p_{max} = 315 bar

1. General information

The directional valve banks type SWS are a refined version of type SWR. Basic function is the directional control of hydraulic consumers (cylinders, motors). But this new concept enables also the incorporation of additional functions for each individual valve section on both the pump (check or throttle valves) and the consumer side (over-center, shock, or check valves). The actuation is carried out via pressure tight, single acting solenoids which act directly on the valve spool. A variety of connection blocks (featuring pressure and return ports) as well as end plates offer solutions to many applications.

Order examples

	Example 1: Combination with compact- hydraulic power	HK 448/1 - Z12.3 - AS1F2/120 - SWS2F	- G06 - W - D	6 /MF /M /MF	P/DW /R 7/0	/2AN1 /2 /2AL4	30 BN80 B140 BL) 4C140 -1 - (G24
	Example 2: Valve bank with proportional-flow control valve in the connection	SWS2 SE22F-A6	- G12 - D06 - B	2 /MF 6 /M /M	P/DW /DW /Q	'/2AS2 '/2AL3 /2	50 BS31 20	0 -1 - G24 -	300
	block	HMT34DH - 1/220 - 90F	- D12 - G	2 /MF /M	PF/D\ /0	N/2AL /02	4B200 B	L4C200	
	Lifting module for reach trucks		- G	/M	/0	/02	- G24		
	Hydraulic circuit	and illustration acc. to example 1							
A little day									
	0000				R1				
	HYDRAULIK	HAWE HYDRAULIK SE STREITFELDSTR. 25 • 81673 MÜNCHEN					Directio	D 7951 onal spool valve type SWS	banks
								March	1999-02

2.1

Pressure specifi-

mines the spring

cation deter-

G 12 to WG 230. see sect. 4.2

3. Available versions, main data

3.1 Connection blocks, adapter plates, and end plates

Order example:

SWS 2 A6 - G/M/0/02 - 1 - G 24 - 200

Table 1: Connection block, adapter plate

1) The spring dome of the pressure limiting valve is made of zinc pressure die-cast (standard). The (optional) steel spring dome should be used, wherever pressure surges of more than 20 ... 25 bar could occur in the return duct. This must be specified in uncoded text.

²) Metering throttle with non-linear characteristic and specification of the fine control block and the max. flow at completely open metering throttle

3) There is also an end plate available featuring a (optionally proportional) by-pass valve (type 31 E or 31 EP acc. to table 2)

Table 2: End plates

 Table 3:
 Flow pattern symbols

Flow

G	D	Е	0	Ν	В	Q	w	R	к
		$X \pm 11$	$X \downarrow 1$		XH	XIII	XH		

Table 4:

Attention: Only in connection with coding /MP (table 5) and/or /DW (table 6)!

Coding	03	06	12	20	without
Flow	3	6	12	20	
Q _{A, B max} (lpm)					

Table 5: Solenoid version

Coding	Brief description	Flow pattern symbols
/ M	On/off solenoid	
/MF /MFA /MFB	On/off solenoid with eleva- tion stop (set screw) for A and B (/MF), for A (/MFA) or for B (/MFB)	M M L
/MD /MDA /MDB	On/off solenoid with eleva- tion stop (turn knob) for A and B (/MD), for A (/MDA) or for B (/MDB)	
/MP	Proportional solenoid	
/MPF	Proportional solenoid with elevation stop	
/MMD /MMA /MMB	Double solenoid for rapid transverse/creeping opera- tion for A and B (/MM), for A (/MMA) or for B (/MMB)	

Table 6: Pump sided additional function

Coding	Brief description	Flow patt	ern symb	ols		
/0	Without additional function, retro- fitting is not possible	/0	/B0	/DW	/TV	
/2	Without additional functions, pre- pared for refitting of /Q, /B or /R	/2	/B1	- <u>A B</u>	$-\frac{(B)}{(A)} - \frac{(A)}{(A)}$	
/B	Orifice with - \varnothing (mm)		\square			
/R	Check valve	/R	/Q	a		
/Q	Throttle (adjustable)		Ver			_
/DW	Flow control valve (retrofitting is not possible), for a load independent flow limitation, most advantageous in combination with /MP(F) table 5 and coding for flow acc. to table 4		<u> </u>			
/тv	Preference flow devider with a de- fined for this consumer. Attention: This is only available for the first valve section (this feature is housed in the connection block) and in combination with over-center valve (/2AL BL) acc. to table 7, see order example			(R)	Crder example: SWS 2 -D06/MP/TV/2AL4D18 -G/M/0/2 -31EP-G24	」 R 0 BL4D180

3.2.2 Intermediate sections

Pressure reducing valve

The valve can be ordered anywhere between the directional spool valve sections. All subsequent spool valve sections receive only pressure fluid with the set pressure (secondary pressure), independent of the higher system pressure upstream. Coding Z1 ... Z8 may be added any position within the complete valve bank coding, see order example in the margin.

p_{A(B)} - Q_{A(B)} - curve (tendency)

SWS 2 A7 - G/M/R/02

-Z3

Order example and flow

pattern symbol

 $Q_{A(B)} = 0$ lpm (Consumer on the secondary side in stop position)

Valves coding Z are always set for max. pressure at HAWE, if a specification is missing in the order. When a specific pressure setting is desired, thus should be specified in the order coding in uncoded text.

Example: SWS 2 A6 - .. Z3 ... - 1 - G 24 - 210, Z3 set for 100 bar

The order coding for spares or storing is as follows: ADM 22 PA for Z1; ADM 22 PC for Z2; ADM 22 PD for Z3; ADM 22 PF for Z4 ADM 22 PAR for Z5; ADM 22 PCR for Z6; ADM 22 PDR for Z7; ADM 22 PFR for Z8 Sub-plate for pressure reducing valve HAWE-No. 7451 004

Intermediate section with flow limitation for all subsequent functions

Intermediate section with proportional 3-way flow control valve

Coding Basic type	Metering throttle	Brief description	Flow pattern symbol
ZSE	22 F 15 F 10 F 6 F 4/18 F 3/26 F 3/7 F 3 F	A inter-section with a 3 way-proportional-flow control valve is used to limit the flow for all subsequent valve sections A bypass nozzle prevents blocking of the 3 way flow control valve when all valves are closed. The control characteristics corresponds is like with connection blocks type SWS 2 SE (see table 1 and curve in sect. 4.1).	

4. Additional parameter General and hydraulic data

4.1

Design	Directional sp	ool valve						
Surface protection	Spool valve he	ousing nitro	ous hardened, sol	enoid zinc	galvanize	ed		
Installed position	Any, for faster	Any, for fastening see dimensional drawings in section 5.1 ++						
Pipe connection	Pipe thread D	Pipe thread DIN ISO 228/1 (BSPP)						
Port coding	P = Press A, B = Cons R = Retur M = Port f	P = Pressurized fluid inlet port (pump) G 3/8 A, B = Consumer G 3/8 or G 1/4 (dep. on type) R = Return port G 3/8 M = Port for pressure gauge G 1/4						
Flow direction	In accordance the flow direct	with arrov ion !	v direction in the	flow patter	rn symbol	s; It is not	permissible	to reverse
Over lapping	Positive							
Operation pressure	p _{max} = 315 b	ar (all ports	5)					
Flow	Flow Q _{ma} x = (The piston sic	25 lpm; Pe le of a diffe	ermissible return f rential cylinder sh	low appro: ould be co	x. 50 lpm	to A, if the r	eturn excee	ds 25 lpm
Hydraulic fluid:	Fluids acc. to Viscosity rang Optimal opera Also suitable a HEES (synth. E	DIN 51524 e: min. app tion range: re biologica Ester) at ope	table 1 to 3; ISO prox. 4; max. appr approx. 10500 ally degradable pr eration temperatur	VG 10 to 6 rox. 1500 r mm ² /s ressure fluic res up to ap	58 acc. to mm²/s ds of the t oprox. +70	DIN 51519 ype HEPG °C.HETG (\$) (Polyalkylen seed oil) is no	glycol) anc ot suited.
Temperature	Ambient: appr Start temperat as long as th Biological deg to the compat Restrictions	Ambient: approx40+80°C; Fluid: -25+80°C, pay attention to the viscosity range! Start temperature down to -40°C are allowable (Pay attention to the viscosity range during start!) as long as the operation temperature during subsequent running is at least 20K higher Biological degradable pressure fluids: Pay attention to manufacturer's information. With regard to the compatibility with sealing materials do not exceed +70°C.						e! ring start!), 0K higher. Vith regarc
Max. contamination	Conforming	18/14 l	SO 4406					
Mass (weight)	Spool valve (inc	I. actuation)	Connection blog	cks	Ancillar	/ blocks	Intermediat	te sections
	Coding	appr. kg	Coding	appr. kg	Coding	appr. kg	Coding	appr. kg
	G, D, E, O, N	1.8	A 5	0.8	/1./2	0.5	Z1 Z 8	1.5
	B, Q, W, R, K	1.3	A 6, A 7	1.5	others	1.0	ZSB	1.1
			S 6, S 7, V 6, V 7	1.8			ZSE	2.0
Δp-Q curve The characteristics apply to all spool valve sections, no matter where they are in- stalled within the valve bank. The measurable deviations are insignificant.	Back pressure ∆p (bar)	w pattern c a, D, E, Q, C	D, N B B B C, N B C C C C C C C C C C C C C C C C C C	(a 52 Sack pressure ∆p (bar)	10 8 Flo 6 4 2 0 0	w pattern o B, W, R, 5 1	coding K 0 15 Fl	20 2 20 Q (lpm)
These curves always apply to o tion), $P \rightarrow A(B)$ or $A(B) \rightarrow R$. The tot: way directional valves is taken at an outflow share (Δp_{out}). Importa (e.g. differential cylinders) show Iso (Δp_{in}) and (Δp_{out}) won't be equal to the ment!	ne flow direction al back pressure (P. It consists of a ant: Consumers v uneven flow at the qual regardless of	only $P \rightarrow R$ Δp_{total}) with in inflow shading the inflow shading the s	(idle circula- in 4/3- or 4/2- are (Δp_{in}) and al area ration r ports, i.e. a ion of move- $_{urn} = Q_{in} \frac{A_{out}}{A_{in}}$	Q _{return}	ut Q _{in}	Δp _{re}	A_{in} Q_{in} A_{in} A	$\Delta p_{out} \frac{A_{out}}{A_{in}}$
Q-I curve for proportional flow control valve (connection block)	A max QA max ion table) - 05							

Solenoid Electrical data (/M ta	able 5)								
Solenoid	Manufact Reference	ured and te e value for	ested confo nom. power	rming VDE ([•] P _N , 24.4 W)580, opera $/ \pm approx.$	iting pressi 6% dep. o	ure resistant n nom. volta	in the pressu ge U _N and b	ıre fluid rand
Coding	G 12 X 12 L 12	G 24 X 24 L 24	G 24 EX ¹)	G 48 X 48	G 80 X 80	G 98 X 98 ²)	G 205 X 205 ²)	WG 110	WG 2
Nom. voltage U _N	12V DC	24V DC	24V DC	48V DC	80V DC	98V DC	205V DC 50/60Hz	110V AC 50/60Hz	230V
Nom. power P _N (W)	28	28	23.6	28	28	28	28	28	28
Nom. current I ₂₀ (A)	2.34	1.17	1.0	0.58	0.35	0.28	0.14	0.28	0.14
Circuitry (valid for solenoid a and b)		DC-voltage Coding G Coding L				, = (AC-voltage Coding WG		2+
Plug	A DIN 43 Coding G black plu Coding V plug, feat	650 Pg 9 (s i (V DC) is gs /G (V AC) uring an in	see also D 7 s only availa is only avail ternal bridge	'163) ble with gra lable with bl e rectifier cir	y or ack cuit	Gray plug [Black blug	
Relative duty cycle	100% ED Stamping solenoid) g on the		Operation	At ambie	nt tempera le (%)	ture (°C) < 4	40 60 0 approx. 6	80 60 appr
Switching times (refer- ence value)	On: app	rox. 60 7	0 ms Of	f: approx.3	0 60 ms				
Switching operations	approx. 3	3600 switch	nings / h						
Protection class DIN 40050	Solenoid	IP 54, con	nection area	a IP 65 (dev	ice socket	in assembl	ed state)		
Insulation material class	F								
Surface temperature	approx. 8	35°C at 20°	C ambient t	emperature					
Mounting	The soler electrical	noid can be defect.	e simply rem	oved after s	lackening	he knurled	nut, easing r	replacement	in case

Proportiona solenoid (/MP.. table 5):

Solenoid	Conforming VDE 0580			
Nom. voltage UN	12V DC	24V DC		
Coil resistance R20	6.0 Ω	24.0 Ω		
Current , cold I20	2.5 A	1.25 A		
Nom. current IN , 70% of I20	1.35 A	0.88 A		
Power , cold $P_{20} = R_{20} \times I_{20}^2$	30 W	30 W		
Nominal powerP _N = R ₂₀ x I_{20}^2	21 W	21 W		
Recom. dither frequency	50 150 Hz			
Dither amplitude	20 40% of I _N			
Relative duty cycle	100% ED (ref. temp. ϑ11 = 50°C)			
Electrical connection	DIN 43650 B (industrial standard)			
Protection class DIN 40050	Solenoid IP 54, connection area IP 65 (device socket in assembled state)			

1) Ex-proof solenoid

ATEX-Certificate of conformity	TÜV-A 03ATEX 0017 X
Coding	II 2 G Ex d IIB + H2 14
	II 2 D Ex mbD 21 1135°C
Duty cycle	IP 67 (IEC 60529)
Restrictions for use:	
Ambient temperature	-35 +40°C
max. fluid temperature	+70°C
el. protection against	
overload (conf. IEC 60127)	I _F < 1,6 A-T
Surface coating	Housing galvanically zinc coated
-	Coil and connection cavity are
	moulded
Electrical connection	3x0,5 mm ²
Cable length	3 m. Option 10 m
3	(cable Öl FI FX-440P ®
	$C_0 \perp APP D_{-70565}$ Stuttgart)
	00. LAT, D 70000 Stutigart)

Attention : Protect the complete valve against direct sun light. Observe the operation manuals B 03/2004 and B ATEX! Electrical lay-out and testing conforming EN 60079, VDE 0170-1, VDE 0170-5

²) These solenoids are intended to be connected via a customer furnished bridge rectifier to mains 50/60Hz.: G 98 for mains 110V AC; G 205 for mains 230V AC

5.4 Intermediate sections

Coding **Z 1 ... Z 8**

Coding **ZSB**

